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WAVEGUIDES

DYNAMICS OF NONSOLITON PULSES IN A
NONLINEAR TRANSMISSION CHANNEL

I. N. S1SAKYAN, A. B. SHVARTSBURG and A. YU. SHERMAN

Abstract—The paper reports a study of the evolution of ultrashort nonsoliton pulses travelling in a
nonlinear single-mode waveguide. The intensity maximum and halfwidth of nonsoliton signal envelopes
exhibit oscillatory and monotonous behaviour.

An application of ultrashort pulses is associated with the transmission of large amounts of
information via optical fibres. Due to the short length (< 1 mm) of these pulses, they are susceptible
to dispersion spreading and deterioration of the pulse repetition rate when propagated through a
nonlinear lightguide. However, the stabilization of such pulses may be much improved by using
nonlinear effects in opposition to the dispersion ones.

Practical transmission through optical fibres requires a special system of signals that play the
role of elementary symbols. The early designs of such communication lines have been associated
with solitons [1] whose envelopes do not contain free parameters. However, at a distance of several
dispersion lengths, typical of integrated computer systems, where nonsoliton signals are stable,
transmission with nonsoliton signals allows the free parameters to be used for message encoding.
This possibility may be of interest for transmitting signals of multicharacter logic and for using
more intricate codes than the traditional binary code.

When a strong short pulse propagates in a single-mode optical fibre whose refractive index is
the square function of the field amplitude

n=ngy+ n,|E?

and there is negligibly small attenuation in the region of anomalous dispersion, the evolution of
the normalized complex envelope of the pulse (z, ) = E(y, t)/E(0, ) is described by the nonlinear
Schrodinger equation

L
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with the initial condition (0, 7) = y,(t) defined by the pulse at the input to the fibre. Here, # and
7 are the normalized coordinates related to the longitudinal spatial coordinate z and real time ¢ as
z _t—1z/vg

==, T=E—0,
=L T,

where v, is the group velocity, L, and T, are the characteristic dimensions, and
K= L,oc™ n|El, (1)

is the nonlinearity parameter defined by the properties of fibre material and by the launched pulse.

In Eq. (1), we neglect dispersion terms higher than the second order, the dependence of the
group velocity on intensity, and attenuation.

The well-known stationary solution of Eq. (1) in the soliton of the envelope is

Wy, 7)*= (cosh'l \/§r> )
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Fig. 1. Evolution of the parabolic pulse (3) at v=2. Curves 1, 2 and 3 correspond to x =0, k = 2.5k,
and x = 4k, respectively. The width at half-maximum H is measured at the level 0.5|y)2.
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Fig. 2. Effect of the periphery of the pulse (3) on the evolution of the intensity envelope at x = 4x(v).
Curves 1,2 and 3 correspond to v=5, 3 and 1 respectively. The width at half-maximum H is measured at
the level 0.5//]2.

Rather than use (2) we discuss the parabolic finite pulses

e {(1 IR @)
oAt = 0, 2>=1,
which carry the dimensionless energy
1
W=J Wo(t)? dr=/aT(v+ 1)/T(v+3), 4)
-1

where the domain of the gamma function I' includes a parameter v.

Figures 1 and 2 illustrate the evolution rate of envelopes with steep (v < 2) and smoothed (v > 2)
leading edge. Figure 1 represents the pulse intensity maximum |2 and the corresponding halfwidth
H as functions of variable n at v =2 for several values of k. The trends of the halfwidth variation
are opposite to that of the intensity maximum. For comparison, the plots corresponding to a linear
evolution (x = 0) are also given.

For greater values of k the oscillatory evolution is seen to give way to a monotonic evolution

for k ~ 4k, where
3 2
wr (D7)

At distances of < Z the pulse is almost steady. A further increase of k again intensifies oscillatory
trends in the dynamic behaviour of the pulse. Thus, the range of values near k =4k, corresponds
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Fig. 3. Minimum admissible spacing between two pulses, At,,;,, which after travel over a distance 7 (shown
at the curves) remain resolvable by the Rayleigh criterion (x = 2), versus the initial pulse length 1.

to a steadiest pulse. Figure 2 illustrates a monotonous evolution of the various envelopes of the
family (2) at k¥ = 4«,,.

A topical problem in the construction of a communication system is to estimate the maximum
admissible data transmission rate. To answer this question we investigated the interaction of two
pulses propagating in a single-mode fibre and evaluated the maximum distance of travel at which
the pulses were still distinct.The distinguishability was understood in the sense of Rayleigh, i.e. the
pulses were deemed resolvable if the irradiance midway between the two pulses dipped below the
half-maximum level.

The initial condition for the nonlinear Schrodinger equation (1) was taken in the form

Yol(t) =olt — At) + Yoz + A1),
where At is the half-spacing between the centres of the two pulses. Two types of envelope were
considered, Gaussian f(t)=exp(—12/2t%) and hyperbolic secant ¢0(1)=cosh'1(m-r), and
the scaling factor 71 of the Gaussian pulse was selected so that the half-power widths H of both
pulses were equal at the onset of evolution.

The results of the evolution are presented in Fig. 3. The minimum transmission pulse spacings
for resolvable detection are given as functions of pulsewidth z, for fixed lengths of transmission
lines in units of #. The maximum attainable transmission rate is about Ar_!. Each length of
communication is associated with its own optimal pulsewidth 7, of the given envelope. Assuming
that the pulsewidth 7, is selected appropriately, the maximum transmission rate for Gauss-shaped
pulses can be higher than for pulses of hyperbolic secant shape.

Figure 3 shows how two pulses interact until the overlapping intensity satisfies the Rayleigh
criterion. After that there may be periodic regimes of coalescence and stratification of the pulses.
For solitons, such a regime has been reported by Hasegawa [3]. The same trend is evident in the
evolution of parabolic pulses (3) for the same initial spacing t = 4.
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